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Sequential transformations1 allow the assembly of
complex molecules in a simple manner, with a minimum
of purification steps, and are accordingly ideal compo-
nents of elegant and efficient synthetic strategies. In
recent years, samarium diiodide2 has evolved as a unique
single electron reducing agent that is especially well
suited to promote sequential processes that combine
radical and anionic steps with a high degree of chemo-
and stereoselectivity.3 On the basis of the rich chemistry
uncovered for this reagent, we hypothesized that its
interaction with a 6-deoxy-6-iodohexopyranoside deriva-
tive A (Scheme 1) could trigger a reaction cascade that
would eventually lead to a novel ring contraction4,5 of the
pyranose moiety. This sequence requires four SET steps
(i.e., 4 mol equiv of SmI2) and consists of (1) a reductive
dealkoxyhalogenation to give the ring-opened hex-5-enal
B;6 (2) an intramolecular ketyl-olefin reductive coupling
affording the ring-contracted organosamarium interme-
diate C,3a-c,7 and (3) the intermolecular trapping of this
organosamarium with appropriate electrophiles to pro-
duce finally the branched cyclopentitol derivative D.3a-c

We report here the successful implementation of the
postulated process for a series of 6-deoxy-6-iodohexopy-
ranosides (1-7)8,9 (Table 1) of different configuration and
substitution pattern and initial studies of the influence

of the reaction conditions and protecting groups on the
outcome of the reaction.
Preliminary experiments were performed with com-

pound 1 to determine the optimum reaction conditions.
In a typical procedure, a 0.05 M solution of 1 in THF was
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Scheme 1a

a Reagents: (a) 2 SmI2; (b) (i) E+; (ii) H+.

Table 1. Reaction of 6-Deoxy-6-iodohexopyranosides
with SmI2 in THF-HMPA

a Products obtained after acetylation of the crude reaction
mixture. b The stereochemistry of 13 was further confirmed by its
transformation into 8 by desilylation (TBAF in THF) followed by
in situ acetylation (Ac2O, pyridine). c Inseparable mixture. Ratio
determined by 1H NMR.
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added dropwise to a 0.1 M solution of SmI2 (6 mol equiv)
in THF and HMPA (30 mol equiv) at 22 °C, and the
mixture was stirred for 1.5 h. In the case of 1, the
reaction products were better isolated after in situ
acetylation of the crude reaction mixture (Ac2O/pyridine).
Three cyclopentane products (8-10)8,12 were isolated
together with the corresponding 6-deoxypyranoside (11).
Cyclopentane 9, which was shown to have the same
stereochemistry at the two new stereocenters as the
major cyclopentane 8,12 probably derives from attack of
the major diastereoisomeric organosamarium intermedi-
ate C on the acetone molecule released from 1 in the
reductive elimination step. Lower temperatures favored
formation of 11 (12% at 0 °C; 15% at -25 °C; 63% at -78
°C)13 and produced a decrease in the yield of 9 (3% at 0
°C; 0% at -25 °C or below) without having a significant
influence on the diastereoselectivity of the ring-closure
reaction. Also important is the influence of the nature
of the protecting groups both on the diastereoselectivity
(cf. Table 1, entries 1 and 2 and 3 and 5) and on the
extent of the competing simple dehalogenation reaction.
The highest diastereoselectivity was observed for the
transformation of substrate 1 and is probably the result
of electrostatic repulsion in the intermediate ketyl radical
anion derived from B, where O-2 is presumably in the
form of a samarium(III) alkoxide. Increasing steric bulk
around the halogenated carbon produced an increase in
the amount of the simple dehalogenation reaction giving
the 6-deoxypyranoside (cf. Table 1, entries 1 and 7 and
3 and 5).14 Interestingly, in the case of the benzylated
derivative 4 the only isolable product was the corre-
sponding 6-deoxypyranoside 17 (Table 1, entry 4).15 A
higher yield of 17 (70%) was obtained when this reaction
was performed in the presence of MeOH (30 equiv). In
most cases, the cyclic products have the methyl group
trans to the hydroxyl group, as expected for these exo
cyclizations.3 In addition, a trans orientation between
the hydroxyl and the vicinal alkoxy group at C-2 has been
observed in all cases, except in the cyclizations of the
silylated galacto derivatives 2 and 7.16

Further efforts were directed at determining some
mechanistic aspects of this reaction cascade. Thus,
compound 1 was subjected to the standard reaction
conditions but 10 equiv of D2O was added to the SmI2
solution just prior to the addition of 1. To our surprise,
under these conditions two new cyclopentanes (27 and
28)17 were obtained together with 8 (which was no longer

the major product) and the dehalogenated product 11
(Scheme 2), all showing deuterium incorporation at the
methyl group as determined by 1H and 13C NMR.18 The
change in diastereoselectivity induced by the proton
source is unprecedented and could be the result of
protonation of the O-2 samarium(III) alkoxide in the
ketyl radical anion intermediate derived from B. Che-
lation of samarium(III) or intramolecular hydrogen bond-
ing in this radical anion intermediate may account for
the predominant formation of 27.3c,19,20 The presence of
deuterium in the final products indicates the interme-
diacy of alkyl anions both in the reductive elimination
reaction and in the carbocyclization reaction.6c,3b In
contrast, when the proton source was added immediately
after complete consumption of the starting material no
deuterium incorporation took place.3a
In conclusion, the process described in this paper

represents a new and simple method for the one-pot
preparation of highly functionalized, enantiomerically
pure cyclopentanes from readily accessible carbohydrate
derivatives.21 Further efforts directed to the trapping of
the final organosamarium intermediate with different
electrofiles are in progress.
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